Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study introduces a framework using acoustic phase bits (phibits) as classical analogs to quantum bits for realizing quantum-like gates. These phibits are realized on a metastructure composed of aluminum rods glued with epoxy. First, we realize a single phibit gate in a general form for a Bloch sphere representation, providing a foundation for implementing arbitrary gate operations on a single phibit. Second, within a single mathematical representation, we achieve either the Hadamard or NOT gate by applying the corresponding distinct physical actions for each. Third, we demonstrate the implementation of a sequence of two quantum-like gates, Hadamard followed by CNOT, using a single physical action. This illustrates the effectiveness of the phibit framework, which has the potential to simplify the implementation of a whole series of sequential gates into a single unified physical operation. Finally, we realize a universal set of gates, including the Hadamard, CNOT, and T gates, within a single mathematical representation with three distinctive actions. This approach addresses prior limitations of phibit-based gates, such as Hadamard and CNOT, which were implemented in separate mathematical representations, by introducing a unified framework that eliminates the need for distinct formulations maintaining computational efficiency.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
In this invited paper we review our recent research activities on experimental demonstration of entanglement based (EB) radars, operated over strong atmospheric turbulence channels. In conventional EB communications, sensing, and radars the phase-conjugation, required before homodyne detection takes place, is performed on received signal photons. In atmospheric turbulent channels, the signal photons are affected by diffraction, absorption, scattering, and atmospheric turbulence effects so that only limited number of weak target probe returned signal photons reach the receiver side in EB radars. Moreover, it is extremely difficult to perform any phase-conjugation on weak signal photons when the average number of received photons is <<1. To solve this problem, we have recently proposed to perform phase-conjugation on bright idler photons instead. Namely, we perform the wavelength conversion by the PPLN waveguide on bright idler photons, so that the idler photons will have the same wavelength as the signal photons, and after that we use a classical homodyne balanced detector as an entanglement assisted detector. To generate entangled photon pairs, we use C-/L-band tunable laser, EDFA, the PPLN waveguide, and WDM demultiplexers. To demonstrate the high-potential of the proposed EB radar concept, we developed an experimental outdoor free-space optical (FSO) testbed at the University of Arizona campus. Using this FSO testbed we experimentally demonstrate that the proposed EB radar significantly outperforms the corresponding classical counterpart and can operate in strong turbulence regime. To improve the detection probabilities further, we use deformable mirror-based adaptive optics.more » « less
-
Two S-/L-band pumps, satisfying PPLN-waveguide quasi-phase-matching-condition, are used to generate bright entangled-photons providing needed flexibility in wavelength-selection over entire C-band. By performing phase-conjugation on idler photons, we demonstrate entanglement-assisted communication at 1Gb/s over 1.5km FSO link operated in beyond strong turbulence regime.more » « less
-
Two S-/L-band pumps, satisfying PPLN-waveguide quasi-phase-matching-condition, are used to generate bright entangled-photons providing needed flexibility in wavelength-selection over entire C-band. By performing phase-conjugation on idler photons, we demonstrate entanglement-assisted communication at 1Gb/s over 1.5km FSO link operated in beyond strong turbulence regime.more » « less
-
An entanglement-based continuous variable (CV) QKD scheme is proposed, performing information reconciliation over an entanglement-assisted link. The same entanglement generation source is used in both raw key transmission and information reconciliation. The entanglement generation source employs only low-cost devices operated in the C-band. The proposed CV-QKD scheme with information reconciliation over an entanglement-assisted link significantly outperforms the corresponding CV-QKD scheme with information reconciliation over an authenticated public channel. It also outperforms the CV-QKD scheme in which a classical free-space optical communication link is used to perform information reconciliation. An experimental demonstration over the free-space optical testbed established at the University of Arizona campus indicates that the proposed CV-QKD can operate in strong turbulence regimes. To improve the secret key rate performance further, adaptive optics is used.more » « less
An official website of the United States government

Full Text Available